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The paper formulates and solves the problems of heat and mass
transfer in a compact layer of disperse material for the case of a
drying agent supplied through the material with constant and fluctu-
ating schedules of convective drying.

The general theory of energy and mass transfer as
applied to the drying process has been correlated and
developed by Luikov. However, individual problems
connected with the drying of specific materials require
further research.

Thus, for instance, the process of drying paste-
like materials such as polymers, baking or nutrient
yeast, dyes, etc., which as a rule are reduced to the
form of grains or granules before drying, is com-
plicated by the higher initial moisture content, con-
siderable shrinkage in drying, a tendency to sticking
together and aggregation at the beginning of drying,
considerable nonuniformity of the fractional compo~
sition of particles, and relatively low permissible
heating temperature for the material. Thus, the pro-
cess requires an individual approach to each specific
material.

In this connection a number of difficulties arise in
calculating the drying Kinetics of a given class of
materials. In general practice (for instance, with
conveyer driers of the PKS type), the adjustment of
the process is made at the expense of the drier's out-
put. This in turn adversely affects the general tech-
nological operation of production.

In order to regulate the process of drying, not at
the expense of the output of a drying installation but
by changing the parameters of the drying agent, i.e.,
in order to automate the process, it is necessary not
only to estimate the duration of the process, but also
to know the kinetics of the temperature and moisture
conditions of the material.

Statement of the problem. Let the drying be per-
formed on a continuous multistage belt drier with the
material mixed at points of transfer from belt to belt.
When we consider the process as being made up of
individual stages (roughly, let us consider that each
stage corresponds to the time the material remains
on one belt), then in each stage or segment there takes
place a steady-state heat exchange with a 90° cross
movement of two heat carriers—the air and the
material—with a negative internal source of heat in
the latter,

As stated in [2], the process of steady-state heat
exchange in the given case will be similar to an un-
steady-state heat exchange in a stationary compact
layer of disperse material, and the problem of heat

exchange in the stationary layer under specific con-
ditions may be reduced to the problem of heat exchange
in a regenerative heat-exchanger apparatus with the
use of appropriate differential equations.,

At the beginning of an individual segment the mate-
rial has a layer height hj, the temperature of which
at the moment of time 7 = 0 is equal to ®;. Air begins
to flow through the layer at a temperature ti. At the
same time within the layer there appears a negative
internal source of heat of intensity q. The physical
constants of both heat carriers are known, and we
have to find the temperature field as a function of time
and the coordinates.

To solve the given problem it is necessary to
maintain the following essential conditions:

1. A small temperature gradient inside the individ-
ual particles, If Bi « 1, it may be disregarded in
practice. (For instance, for the case of drying yeast
grains with an initial diameter of 2 mm, Bi = 0.1).

2. The quantity of heat transmitted from particle
to particle in the direction of the air flow is negligibly
small in comparison with the quantity of heat exchanged
between the particles of the material and the air pas-
sing through it, i.e.,

—hm & a(t—8).
Then we can write the following set of differential
equations of partial derivatives [2]:
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The second term of Eq. (2), as we see from a
substitution of numerical values for the worst case
which can occur in practice, constitutes approximately
0.05% in relation to the third term and we can dis-
regard it.

Let us designate

£ = q/a(]"\)mv A= (IF/Wah, B= G.O'/Cm-

Then a set of equations may be written in the following
form:
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In order to solve the given set of equations, it is
necessary to assign a relationship to the negative
internal source of heat or, more precisely, to the
complex & = q/oo Yy, .

In the general case q is a function of the layer
height and time. The form of this functional relation-
ship is unknown. From the theory of drying it follows
that the intensity of evaporation of moisture from a
material is proportional to the partial pressure dif-
ference between the ambient vapor and the evaporation
zone. On the basis of the physical meaning of the
process, we can show that q is mainly dependent on
the temperature of the medium and material, the
dependence of which on 7 and y is accounted for in the
system of equations.

It is noted in [3] that during the first drying period
the rate of drying depends almost entirely on the
product aF(t,; — tg) with ts = tyh. Consequently, we can
assume that during the first period of drying, the
value of ¢ is proportional to the difference between
the dry- and wet-bulb temperatures in air.

The second period of drying is more complicated,
Luikov recommends calling it a period of rising tem-
perature of the material and falling rate of drying[1].
In drying disperse material in a layer with a drying
agent blown through the layer, the problem is further
complicated by the fact that it is difficult to determine
precisely where and when the first period terminates
and the second period begins, since the lower strata
dry faster than the upper strata. .

An approximate answer to this question is obtained
by periodic sampling of the material for moisture at
different depths of the layer. For example, in drying
yeast the experimental data show that within the stra-
tum next to the screen the first period lasts approxi-
mately 5 min, while in the upper stratum (with periodic
mixing of the material) the period (depending on the
drying conditions) is several times longer. Therefore,
it is of special interest to choose a single law of
change of q for both drying periods.

It is known that the period of constant drying rate
comes to an end at the moment when the surface
moisture becomes equal to the hygroscopic moisture.
This leads to the deepening of the evaporation zone
within the material, while the surface temperature
rises above tywh and approaches the ambient tempera-
ture, i.e., t. It follows that the vapor leaves the
surface of the material, and passes into the atmos-
phere at the surface temperature.

Thus, the drying rate decreases when the surface
temperature rises, and drops to zero when the sur-
face temperature becomes equal to the ambient tem-
perature, In connection with this phenomenon, Krischer
[4] recommends the construction of drying-rate curves
based on graphical-analytical calculations of the ap-
parent rate of drying proportional to (ty, —~ tg), where
ty, is the ambient temperature and ty is the tempera-
ture in the evaporation zone at the end of the period.
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In the drying of thermolabile materials, to preserve
the quality of the product, the process takes place at
comparatively low temperatures (criterion Bi, as
shown above, is small)., Taking this into account, we
can assume the evaporation intensity of the process
as a whole to be proportional to the difference be-
tween the ambient temperature and the temperature
of the material. However, this will hold fully only
for the case when the material is delivered to the
drier at the wet-bulb temperature. In practice, the
initial temperature of the material fed ®; differs from
twh-

Thus, for example, if ®; < ty}p, then from the ac-
cepted relationship q = gy (t —®) it will follow that,
at the beginning of the process, the source q at &;
must be greater than at tyh, and this does not cor-
respond to fact. Nevertheless, if one accepts the
experimental data showing that the whole layer (of
optimum height) of the material assumes the wet-
bulb temperature during the first 2—3 min, it may
rightly be assumed that, after an initial time lapse of
5 min, the accepted relationship must correspond to
the actual nature of the process; that is, with a rise
in ® within the lower strata, when these strata pass into
the second drying period, the difference t — ©® de-
creases and produces a diminution of the source. In
the limiting case this difference becomes zero, i.e.,
the material reaches a moisture equilibrium and
evaporation ceases. On the other hand, the source
will be at its maximum at the beginning of the pro-
cess (after 3—5 min) when the difference is at a
maximum.

Thus, if we accept the relationship

e =e,(t—8) (5)

and determine experimentally g; for each individual
section (of the drier belt), then, substituting these
values in the expression for the temperature of the
material obtained from the solution of the set of
differential equations and comparing the result with
the experimental data, it will be possible to judge how
valid the accepted law is.

By its physical meaning the dimensionless com~
plex gy = qp/@oyyy, characterizes the interrelationship
between the external and internal transfer of moisture,
account being taken of the shrinkage of the material.

The coefficient of heat transfer « which enters into
this complex, as shown in [5], has somewhat higher
values than in the case of "pure" heat exchange due to
the effect of mass exchange onheat exchange. However,
if we bear in mind that when the moisture content of
the material is higher, there is greater sticking to-
gether and aggregation of particles, which leads to a
smaller surface of the material being exposed to heat
exchange (2), and that humidification of the air as it
passes through the layer of moist material brings the
values of o closer to the values of "pure" heat ex-
change (5), we may assume that the effect of the
coefficient o will be insignificant, since one phenom-
enon is superimposed upon the other.
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With an increase in air velocity, o increases.
However, at the same time evaporation is intensified,
being accompanied by an increase in the specific
surface ¢ and a decrease in the specific weight of the
material v,,. Apparently, in the future it will be
possible to obtain for certain specific materials an
empirical relationship for determining &, depending
on the schedule parameters and the initial moisture
of the material for the individual stages.

The coefficients A and B, which account for the
effect of external heat exchange and material shrinkage
on the kinetics of heating, are generally functions of
the height of the layer and the time. The sgolution of a
given problem with coefficients having two-parameter
variables will have a very complex form and would be
difficult to apply. In any case, we would have to ex-
press these coefficients through 7 and y by using the
empirical relationships obtained by experiment.

Special tests to investigate the shrinkage of mate-
rials of the class under consideration showed that
(by breaking up the process into 5—-6 stages) it is
possible to assume with sufficient precision for the
individual stages that the coefficients A and B are
constant and equal to the mean effective values.

Solution of the problem. 1. The case of air enter-
ing at a constant temperature. By substituting (3) in
(4), account being taken of (5), we obtain

RS 00 00
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Let us designate
B(l -+ Eo) =,

The hyperbolic equation of the second order thus ob-
tained is solved by the Laplace-Carson method of
integral transformations for the following boundary
conditions:

8 Jt=0 = ®i, tly=0 = f. (63.)

The solution has the form

8 = 0; + (1i — Bi)bexp(— Ay) X
p o (7
x| exp(—b1)} (2 Abyt)dr
6
By substituting (7) in (3), we obtain the formula for
determining the air temperature:

t= 0 = (ti— 1) exp (— Ag)lexp(—b1) o (21 by ) +

: — (8)
+b | exp(—b1)le(2V Aby)d .
8

The integral present in formulas (7) and (8) may be
calculated either graphically or analytically by a
series expansion of the Bessel function. After integra-
tion we obtain here a rapidly diminishing series. Also,
by limiting numbers to the first three terms, the error
will not amount to more than 1%.
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For a more rough evaluation (increasing the error
to 10%), we may limit ourselves to the first term
alone, i.e., we assume [,(2)/ Abyt)=1. Then

0= 0; + ({; — Op)exp(—Ay) [l —exp(—b1)]. (9)

t=8;+({ — @) exp(—Ay). (10)

2. The case involving fluctuation. At the present
time ever-increasinguse is being made of a fluctuating
schedule in drying thermolabile materials, as this
method makes it possible to obtain a dried product of
higher quality. The problem considered above may
also be solved for the case of drying on a fluctuating
schedule.

Let the air be delivered under the drier screen
(belt) at a fluctuating temperature, varying from
tmax (heating) to tyin (cooling) with a frequency w =
= 27/T, where T is the period of fluctuation. Then,
if we designate the amplitude by k = (tmax —tmin)/2
and assume that, because of the inertia of the system,
the temperature changes do not proceed in jumps but
follow the sinusoidal law, the boundary condition (6a)
for Eq. (6) will take the following form:

tly=0 = tay + ksinor,
where
tay= (fmax + fmin)/2,
and the solution will be

8=8;+bexp(—Ay -
(11
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If we limit ourselves to the first term of the series
expansion of the Bessel function, as we did in the first
case, then, after completing the integration, we ob-
tain

0= 8; +exp(— Ay | (fay— 81) |1 —exp(—b71)] +

(13)
-+ b [6sinwT -+ mcosmrmme.\'p(abr)]},
b+ o?
=8+ eXP(—A!/){(tav—Gi)‘F
b )
+ [(0? — 0?) sin ot L+ 20 ® cos o1] } (14)
b2+(1)2
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From a comparison of formulas (9), (10), (13), and
(14), it follows that the current temperatures of the
material and air within the layer, in the case of drying
on constant and fluctuating schedules (with tj = tay),
differ by the presence of an additional term, in the
case of the fluctuating schedule. This term contains
sin wT and cos wr combined with- an exponent which
takes account of the effect of the height of the layer.
This points to the fact that a change in temperature
with an increase in the height of the layer will lag in
phase as compared with the change in air temperature
at the inlet. This picture of temperature redistribution
with respect to the height of the layer, which is exper-
imentally confirmed, leads to more uniform drying of
the material. '

An analysis of formula (11) shows that the average
temperature of the material in the case of fluctuations
should be somewhat lower than in the case of drying
without fluctuations, since informula (13), as compared
with formula (9), there is an additional negative term
which does not contain trigonometric functions (b is
always greater than 0).

A comparison of the juxtaposed cases is also of

interestwith respect tothe intensity of evaporation, i.e.,

with respect to the magnitude of the internal source.
Without fluctuation

=go(fi—Bi)exp(— Ay —b1). (15)
With fluctuation

k
ﬁ exp (—— Ay)X

—
I

= 80!(faVM 0;) exp(—Ay—b1) -+
{
x[(Qb——l)cosmr—wsinmr+exp(——bt) ]} (16)

Informula (16) there is an additional term exp (~b 7)
which always has a positive value. Consequently, in
the second case the process of evaporation will be
more rapid, since the trigonometric functions re-
flect the effect of fluctuations of the source relative
to a certain average value and do not produce any
essential effect on the intensification of the process
in the segment as a whole.

Here we must emphasize the fact that the basic
importance of fluctuation lies not in the intensification
of the process, since the increase for the process as
a whole amounts only to approximately 5—10%, but in
obtaining a product of higher quality. Each specific
product will have its own optimum fluctuation schedule
because; strictly speaking, the empirical coefficient
&g will also depend on the period and amplitude of the
fluctuations,

Then it is possible, after the integration of for-
mulas (15) and (16) with respect to 7 and y, to obtain
a relationship for determining the quantity of evapor-
ated mbisture, which in turn will permit us to deter-
mine the drying time for the selected schedule.

NOTATION

a) heat transfer coefficieﬁt; t,' @) variable temperatures of air and
material in layer; h) total height of layer; y) variable thickness of
layer; 7) drying time; W) water equivalent of air filling the spaces
between particles of material; W,) water equivalent of air passing
through the layer; F) surface area of material; o) specific surface of
material; q) negative internal heat source. Subscripts: a) air; m) mate-
rial; i) initial value of parameter; s) surface; av) average value of
parameter.
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